Analyzing Stem Cell Populations Using Flow Cytometry

Robert Balderas VP, Research & Development BD Biosciences

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products 23-9889-00

March 27, 2008

Stem Cell Research

- What drives cell differentiation in a specific direction?
 - How are stem cells programmed?
 - What are the environmental factors?
- What are the characteristic features of a cell in a particular state of differentiation?
 - Which biomarkers are expressed?
 - What is the function behind expression patterns?
- What are the required factors for keeping a cell in a particular differentiation state?

Stem Cell Subpopulations Determining How Stem Cells Differentiate

- Cells are computational devices
- Their inner workings (algorithms) cannot be determined by reading their steady-state values
- Cells must be interrogated to determine relationships of signaling components

Stem Cell Subpopulations Determining How Stem Cells Differentiate

Stem Cell Subpopulations Determining How Stem Cells Differentiate

Computational analysis

- Quantitative nature of flow data allows powerful statistical regimes to *derive* signaling maps.
- These inner relationships relate to
 - Differentiation state
 - Response to a given growth factor
 - Biosignatures and cell response profiles

Program Overview

- Gating strategies for analyzing stem cell populations
- Pluripotent cell analysis
- Neuronal progenitor cells
- Phosphorylation analysis

Gating Strategies for Stem Cell Populations Using Flow Cytometry

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

Gating Strategies for Analyzing Stem Cell Flow Data

- mES and mEB E14 cell populations were stained and analyzed with:
 - FITC-conjugated SSEA-1
 - PE GATA4
- Populations were gated in different areas of the scatter plot to determine if size and granularity could be used to provide additional information
- Gating strategies can be created for sorting of homogeneous subpopulations

Gating Strategies for Analyzing Stem Cell Flow Data

Can we find subpopulations of cells within each cell profile?

ES

EΒ

(Forward and side scatter patterns are different)

Analysis of SSEA-1 and GATA4 on mES E14

Analysis of SSEA-1 and GATA4 on mES E14

Analysis of SSEA-1 and GATA4 on mES E14

Gating subpopulations reveals SSEA-1-negative and GATA4-positive cells in naïve mES culture

Analysis of SSEA-1 and GATA4 on mES E14-derived Embryoid Bodies

Analysis of SSEA-1 and GATA4 on mES E14-derived Embryoid Bodies

Analysis of SSEA-1 and GATA4 on mES E14-derived Embryoid Bodies

Gating reveals subpopulations of GATA4-positive cells in embryoid bodies

Pluripotent Cell Analysis

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

Markers of Pluripotency

Cell surface markers

SSEA-3

SSEA-4

Tra-1-60

Tra-1-81

CD9

CD81

SSEA-1/CD15 (neg)

CD30 (neg/low)

Intracellular markers

Sox2

Oct3/4

Nanog

Three-color flow-cytometric analysis of human embryonic stem cells using fluorochrome-conjugated antibodies to pluripotent stem cell markers

-Cells dissociated into a single cell suspension

Differentiated Cells

Analysis of GATA4 expression during differentiation of mouse embryonic stem cells (mESs) into embryoid bodies (EBs)

Neuronal Progenitor Cells

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

Analysis of neural differentiation of human embryonic stem cells

- Neural stem cells (NSCs) can be differentiated from hESCs.
- NSCs can self-renew for many passages and can be induced to differentiate into a variety of post-mitotic neural cell types.
- Assessing purity of NSCs is crucial to control for batch-tobatch variability.
- Identifying cell surface molecular signatures of NSCs and neurons will allow for rapid purification of specific neural subtypes from heterogeneous populations.

hESC (H9)–derived neural stem cells

Transfer cells to media with N2, B27, and FGF. Plate coated with poly-l-ornithine

Isolate the neuro ectotderm cells with a pipet and transfer

Flow cytometric quantification of hESC-derived neural stem cells

We are able to generate a near-pure population of neural stem cells expressing Sox2 and Nestin

Human ESC-derived neural stem cells can also be differentiated into neurons

A. hESCs (H9) were grown on hESC-qualified BD Matrigel[™] and mTeSR1 media (Stem Cell Technologies). hESCs were differentiated into neural stem cells similarly as described by Yeo, et al. (2007)

B. Differentiation of H9-derived neural progenitors into neurons (2 weeks)

Finding New Stem Cell Markers using Flow Cytometry

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

CD marker analysis of hESC (H9) and neural stem cells by flow cytometry

- Pilot screen of 21 CD markers was performed (partial analysis of >250 cell surface markers)
- Goal is to define cell surface molecular signatures of both cell types and potentially identify subpopulations
- Next step is to include differentiated neurons

CD marker analysis of hESC (H9) and neural stem cells by flow cytometry

NSC

Phosphorylation Studies

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

Cell Surface and Intracellular Staining for Flow Cytometry

Thorough development of fixation protocols for cell lines and whole blood (immediately out of fresh samples). JNK, cJun AKT, PIP2, PIP3, PKC $\alpha/\beta/\theta/\delta$, Rsk Raf, Mek, ERK, ELK Rsk, Creb, STATs, SRC CREB, cJUN, IKK α p53 s15, s20 s37, s392 Pyk2, Shc, Fak, Src Slp76, Zap70, Syk, Lat, Vav, Lck, PLC γ Beta-integrins

PDGFR cKit VEGFR PKA RB NFAT NF-κB p65 Caveolin Paxillin FLT3 MEKS

>80 specificities

Cell Surface and Intracellular Staining for Flow Cytometry

- 2. Adopting entirely new fluorophores
- 3. Generation of efficient conjugation, purification, and testing protocols

<u>Analysis Steps:</u> 1. Identify live cells 2. Identify cell type 3. Evaluate cell signal

Activation of STAT3 is Essential for Self-Renewal of Mouse Embryonic Stem Cells

• Mouse ES cells can be maintained in a proliferative undifferentiated state in vitro with the addition of LIF into the culture medium

• LIF binds to a two-part receptor complex composed of the LIF receptor and the gp130 receptor

• The binding of LIF triggers the activation of STAT3

© 2001 Terese Winslow, Lydia Kibiuk

- NiwaH. et al. Gene & Dev. 12, 2048, 1998
- Raz R. et al. PNAS, 96, 2846, 1999
- Matsuda T. et al. *EMBO J*. 18, 4261, 1999

http://stemcells.nih.gov/staticresources/info/scireport/PDFs/appendixb.pdf

LIF-Dependent STAT3 Signaling Can Be Measured Using BD[™] Phosflow Technology

Intrathymic T-cell Development

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Class I (1) Laser Products

Intrathymic T-Cell Development

- Commitment to T lineage: Earliest stage is ETP (Sca-1+ Lin- Thy1.1-c-kit hi CD62L+)
- Migration of maturing T cells in the thymic cortex: DN1-4, DP, positive selection of DP cells
- Medulla: Negative selection of SP cells
- Migration of mature SP cells from the thymus

T-Cell Development on OP9-DL1 Cells

- OP9-DL1: Murine BM stromal cell line that has been retrovirally transduced to express the Notch 1 receptor ligand Delta-like 1 (DL1)
- Culture of HSC on OP9-DL1 cells in the presence of IL-7 and FLT3L induces T-cell differentiation

T-Cell Development from Adult Murine BM Derived HSC In Vitro Using OP9-DL1 Cells Generates Primarily DN2-DN3 Precursors

Marcel van der Brink, Sydney Lu

OP9-DL1 Derived T-Cell Precursors

Summary of Findings for the Thymus

- DP thymocytes: Low signaling profile
- DN1/DN2 thymocytes: Increased Raf, Jnk, p38, Akt, and STAT-4 and -5 signaling
- DN and SP thymocytes phosphorylate STAT-5A in response to challenge with IL-7

Acknowledgments

BD Biosciences

- Christian Carson
- Frederick Princen
- Guo-Jian Gao
- Li Li
- Chad Sisouvanthong
- Jerome Zawadski
- Anissa Agadir

Memorial Sloan Kettering Cancer Center

- Sydney Lu
- Onder Alpdogan
- Marcel van den Brink

Stanford University

- Peter Krutzik
- Garry Nolan

Technical Support (US) e-mail: techserv@bd.com Phone: 877-232-8995 prompts #3, then #2

Please visit our Stem Cell Source web page: www.bdbiosciences.com/stemcellsource/

